OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

Mechanics 1

Specimen Paper

Additional materials:
Answer booklet
Graph paper
List of Formulae (MF 1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your Name, Centre Number and Candidate Number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- Where a numerical value for the acceleration due to gravity is needed, use $9.8 \mathrm{~m} \mathrm{~s}^{-2}$.
- You are permitted to use a graphic calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

An engine pulls a truck of mass 6000 kg along a straight horizontal track, exerting a constant horizontal force of magnitude E newtons on the truck (see diagram). The resistance to motion of the truck has magnitude 400 N , and the acceleration of the truck is $0.2 \mathrm{~m} \mathrm{~s}^{-2}$. Find the value of E.

Fig. 1

Fig. 2

Forces of magnitudes 8 N and 5 N act on a particle. The angle between the directions of the two forces is 30°, as shown in Fig. 1. The resultant of the two forces has magnitude $R \mathrm{~N}$ and acts at an angle θ° to the force of magnitude 8 N , as shown in Fig. 2. Find R and θ.

3 A particle is projected vertically upwards, from the ground, with a speed of $28 \mathrm{~m} \mathrm{~s}^{-1}$. Ignoring air resistance, find
(i) the maximum height reached by the particle,
(ii) the speed of the particle when it is 30 m above the ground,
(iii) the time taken for the particle to fall from its highest point to a height of 30 m ,
(iv) the length of time for which the particle is more than 30 m above the ground.

Fig. 1
A woman runs from A to B, then from B to A and then from A to B again, on a straight track, taking 90 s . The woman runs at a constant speed throughout. Fig. 1 shows the (t, v) graph for the woman.
(i) Find the total distance run by the woman.
(ii) Find the distance of the woman from A when $t=50$ and when $t=80$,

Fig. 2
At time $t=0$, a child also starts to move, from A, along $A B$. The child walks at a constant speed for the first 50 s and then at an increasing speed for the next 40 s . Fig. 2 shows the (t, v) graph for the child; it consists of two straight line segments.
(iii) At time $t=50$, the woman and the child pass each other, moving in opposite directions. Find the speed of the child during the first 50 s .
(iv) At time $t=80$, the woman overtakes the child. Find the speed of the child at this instant.

5 A particle P moves in a straight line so that, at time t seconds after leaving a fixed point O, its acceleration is $-\frac{1}{10} t \mathrm{~m} \mathrm{~s}^{-2}$. At time $t=0$, the velocity of P is $V \mathrm{~m} \mathrm{~s}^{-1}$.
(i) Find, by integration, an expression in terms of t and V for the velocity of P.
(ii) Find the value of V, given that P is instantaneously at rest when $t=10$.
(iii) Find the displacement of P from O when $t=10$.
(iv) Find the speed with which the particle returns to O.

Three uniform spheres A, B and C have masses $0.3 \mathrm{~kg}, 0.4 \mathrm{~kg}$ and $m \mathrm{~kg}$ respectively. The spheres lie in a smooth horizontal groove with B between A and C. Sphere B is at rest and spheres A and C are each moving with speed $3.2 \mathrm{~m} \mathrm{~s}^{-1}$ towards B (see diagram). Air resistance may be ignored.
(i) A collides with B. After this collision A continues to move in the same direction as before, but with speed $0.8 \mathrm{~m} \mathrm{~s}^{-1}$. Find the speed with which B starts to move.
(ii) B and C then collide, after which they both move towards A, with speeds of $3.1 \mathrm{~m} \mathrm{~s}^{-1}$ and $0.4 \mathrm{~m} \mathrm{~s}^{-1}$ respectively. Find the value of m.
(iii) The next collision is between A and B. Explain briefly how you can tell that, after this collision, A and B cannot both be moving towards C.
(iv) When the spheres have finished colliding, which direction is A moving in? What can you say about its speed? Justify your answers.

7 A sledge of mass 25 kg is on a plane inclined at 30° to the horizontal. The coefficient of friction between the sledge and the plane is 0.2 .
(i)

Fig. 1
The sledge is pulled up the plane, with constant acceleration, by means of a light cable which is parallel to a line of greatest slope (see Fig. 1). The sledge starts from rest and acquires a speed of $0.8 \mathrm{~m} \mathrm{~s}^{-1}$ after being pulled for 10 s . Ignoring air resistance, find the tension in the cable.
(ii)

Fig. 2
On a subsequent occasion the cable is not in use and two people of total mass 150 kg are seated in the sledge. The sledge is held at rest by a horizontal force of magnitude P newtons, as shown in Fig. 2. Find the least value of P which will prevent the sledge from sliding down the plane.

